
Milestone 1
Dulce Torres, Kyle Pickle, Pranav Kode, Sean Nguyen,

Ruqayyah Siddique

Our Project

Data Model stores the
Page Ranges with there
base page, tail page, the

schema columns in
columnar form.

Bufferpool maintains
data in memory, has page
directory that maps RIDs

to pages in memory

Query Interface improves
discoverability of data,

through querying
capabilities

Page Range Flow
page
base page
tail page

key

list of base pages

list of tail pages

Page Directory

PageDirectory routes RIDs to records

RID

TLB PageTable

. . .

. . .

Record

Hit

Miss

- PageTable stores all
PageRanges in a
multi-level table.

- TLB keeps a cache of
recently-accessed
records for quick access.

Bufferpool (TLB)
Translation Lookaside Buffer

- Simplified (Records
already stored in memory)

- Speeds up access time
- Flexible # of rows and cols
- LRU replacement

Access TimeRecord

. . .

. . .

. . .

RID

. . .

RID Hash
function (%)

Page Table

- Multi-Level Page Table
- For M1, stores

references to the
actual records in
memory

- Fixed-sized Pages
make indexing much
faster

001101101001011110000011001101 1111001000
Index in Lv. 2 TableIndex in Lv. 1 TableIndex in Lv. 0 Table Index in PageRange

Lv. 0

. . .

Lv. 1

. . .

Lv. 2

. . .

Pg. Rn.

. . .

Record

- Multiple levels reduce
storage cost with
large #s of records

Index

● RHash
○ Hash Table + ordered linked list
○ Map column values to Nodes
○ Node

■ RID set
■ Next value

Query API

● Work through functions defined in the table class
● Delete

○ Use the primary key to get the RID, delete from the database, then update the index if
necessary

● Insert
○ Check if the primary key already exists before inserting

● Select
○ Get all RIDs containing the desired value, then locate the record for each RID.

● Update
○ Check if the primary key already exists

● Sum
○ Do a range based search based on the index keys, get the appropriate column from each RID,

then sum the list

Performance on different hardwares

Milestone 2
Dulce Torres, Kyle Pickle, Pranav Kode, Sean Nguyen,

Ruqayyah Siddique, Wen Wei Tan

Durability & Bufferpool Extension

- New PageDirectory works at
the granularity of PageRanges

- Two modes, in-memory and
on-disk (automatic)

- TLB has been updated to work
with PageRanges

- Dirty and Pinned bits
- New PageAccessor works with

FileService, pulling from and
writing to disk

RIDTLB

. . . F
F

Dirty

T

PageTable

. . .

Page
Accessor Disk

PageRange

Miss

Record

in_mem

!in_mem

Hit
Add

F

Bufferpool (TLB)
- New columns, Dirty and

Pinned
- When an entry is deleted,

updated, or added to, it
is marked as Dirty

- When an entry is being
merged, it is Pinned

PageRange

. . .

. . .

. . .

RID

. . .

RID Hash
function (%)

F
F

F
T

F
F

F

Pinned

F
F
F

F

F
F

F

Access Time

T

T

T

T

T

T

T
T

T

Dirty

FileService
- DataBase is read from / written to a single .db file

- No Pickle used; organized and parsed through from scratch

- FileService has 3 Functions:
- load_tables
- pull_page_range
- merge_tables

DataBase TLB

Tables Indices

RHashs

PagesPage
Ranges

Merge
● Creates copy of

new base page
● Updates the

records of the old
base page

● All prior tail
records marked as
deleted

● Old base page
also marked as
deleted

● Appends the new
copy of the base
page

Indexing
● Create_index

○ Create a new RHash object
○ Scan through all table records and call the

index’s insert function for the corresponding
column

● Drop_index
○ Deletes the index of the specified column from

memory
● New seeding scheme

○ 1% chance to add a seed after an index insert
○ Smallest value is always one of the seeds
○ Max number of seeds is 25% of the total number

of records
● Indices are persisted in the .db file

Milestone 1 vs Milestone 2

System: Ryzen 7 2.9 Ghz with 8MB L3 cache, 16GB ram
Workload: __main__.py

Milestone 3
Dulce Torres, Kyle Pickle, Pranav Kode, Sean Nguyen,

Ruqayyah Siddique, Wen Wei Tan

Two-Phase Locking

1st thread/
2nd thread

Shared Lock
(read)

Exclusive
Lock (write)

Shared Lock
(read) ✓ ✗

Exclusive
Lock (write) ✗ ✗

- Use shared locks when data is read,
allowing any other number of people to read
but no one to write until released

- Use exclusive locks when data is written to,
preventing anyone else from reading/writing
until released locking process: Acquire ->
Execute -> Release

- Transaction immediately aborts if it is
unable to obtain a lock

- Obtains all locks before starting execution
of queries

Read-Write Lock
- Non-blocking and reentrant

- Shared and exclusive locks used by 2PL

- Allows many readers, but only 1 writer

- Managed by a lock-manager object,
which is built on top of the Python
dictionary

1 Writer OR Many readers

Transaction
- Standard 2PL using Lock class
- First tries to acquire all necessary

locks
- If one fails, release all acquired

locks and abort
- Then performs all queries

contention-free
- Finally releases all locks

Transaction Worker
- Runs all given Transactions
- If one aborts, try it again later
- Finish when all Transactions have run

successfully

Commit

Commit

Commit

Abort

Abort

Transactions

Queries
insert(...
select(...

. . .
delete(...

Locks
����… ��
����… ��
����… ��
����… ��

Retry Aborted
Transactions

Transaction

Transaction
Worker

Bufferpool (TLB)
- The bufferpool has been

made to be
contention-free

- Corresponding table of
locks

- If full of dirty
PageRanges, bufferpool
is merged with the disk

- prevents more bufferpool
locks from being acquired

- When all locks are released,
merge is conducted

F

PageRange

. . .

. . .

RID

. . .

Hash
function (%)

F
F

F
T

Pinned

F
F
F

F

Access Time
T

T

T

T

T

T
T

Dirty

. . .

RID
Acquired

Acquired

Lock

Acquired
RID Hash

function (%)

get_entry(RID)

get_lock(RID)

Same function

Acquired
Merge Lock

Check merge_lock

Looking Ahead
- Faster language like C++ or Rust
- More robust logging to recover from crashes better
- Advanced concurrency control like 2VCC or QueCC

Thank You!

